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Conjugate Gradient Parametric Detection of

Multichannel Signals

Chaoshu Jiang, Member, IEEE, Hongbin Li, Senior Member, IEEE, and

Muralidhar Rangaswamy, Fellow, IEEE

Abstract

The parametric adaptive matched lter (PAMF) detector for space-time adaptive processing (STAP)

detection is re-examined in this paper. Originally, the PAMF detector was introduced by using a

multichannel autoregressive (AR) parametric model for the disturbance signal in STAP detection. While

the parametric approach brings in bene ts such as reduced training and computational requirements as

compared with fully adaptive STAP detectors, the PAMF detector as a reduced-dimensional solution

remains unclear. This paper employs the conjugate-gradient (CG) algorithm to solve the linear prediction

problem arising in the PAMF detector. It is shown that CG yields not only a new computationally ef cient

implementation of the PAMF detector, a new and ef cient AR model order selection method that can

naturally be integrated with CG iterations, but it also offers new perspectives of PAMF as a reduced-rank

subspace detector. We rst consider the integration of the CG algorithm with the matched lter (MF)

and parametric matched lter (PMF) when the covariance matrix of the disturbance signal is known.

It is then extended to the adaptive case where the covariance matrix is estimated from training data.

Important issues such as computational complexity and convergence rate are discussed. Performance of

the proposed CG-PAMF detector is examined by using the KASSPER and other computer generated

data.
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Index Terms

Parametric adaptive matched lter, conjugate gradient method, autoregressive process, Wiener lter.

I. INTRODUCTION

This paper is concerned with a multichannel signal detection problem frequently encountered

in phased-array radars and many other applications. With extra spatial information provided by

multiple sensors, higher performance of signal detection can be achieved (than a single-sensor

system), especially in detection of signals buried in a background of directional jammers and

space-time correlated clutter. A widely explored technology for multichannel signal detection

is space-time adaptive processing (STAP) [1], rst proposed by Brennan, Reed and Mallett

[2]. Most STAP-based methods, such as the adaptive matched lter (AMF) [3] and Kelly’s

generalized likelihood ratio test (GLRT) [4], need to invert a large space-time covariance matrix.

These methods require not only a large number of independent, identically distributed, signal-

free training data to estimate the matrix, but they also incur a high computational cost for matrix

estimation and inversion.

A parametric STAP detector based on a multichannel autoregressive (AR) disturbance model

has been proposed for airborne radar applications [5], [6] to reduce both the training data

requirement and computation load. This method is called the parametric adaptive matched lter

(PAMF) [6]. While the PAMF detector has been found to yield exceptional performance with

signi cantly reduced training and computational requirements when compared with fully adaptive

STAP detectors, the connections between the PAMF and other reduced-dimensional or partially

adaptive STAP detectors [1], which have similar bene ts in training and complexity, remains

unclear.

This paper aims to provide some insights into this problem by employing the conjugate-

gradient (CG) method to solve the linear prediction problem underlying the temporal whitening

phase of the PAMF detector. Our choice of the CG method is motivated by several factors. First,

as will be shown, the CG algorithm naturally leads to a subspace interpretation of the PAMF

detector, and offers a connection to the other reduced-rank STAP detectors. Second, the CG

method is a computational ef cient algorithm to solve the linear prediction problem underlying

the PAMF detector. In particular, for airborne radar applications, due to an inherent structure of

May 9, 2011 DRAFT2
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the disturbance covariance matrix, the CG algorithm can usually achieve convergence using only

a few iterations, thus providing signi cant computational saving. Third, since the disturbance

covariance matrix has a block-Toeplitz matrix structure, preconditioning methods(e.g., [7], [8],

[9]) can be employed, which are very effective in further speeding up the convergence rate in

CG iterations, while adding up only a modest computational overhead per iteration (due to the

block-Toeplitz structure). Finally, as a by-product, we show that the CG algorithm also yields a

new and computationally ef cient AR model order selection method that can be integrated with

the CG iterations.

The remainder of this paper is organized as follows. The signal detection problem is introduced

in Section II. A brief review of the matched lter (MF) and parametric matched lter (PMF)

detectors is provided in Section III. In Section IV, the CG versions of MF (CG-MF) and

PMF (CG-PMF) and a CG-based model order selection method are proposed. The convergence

rate of CG in airborne radar applications, along with a preconditioned CG-PMF (PCG-PMF)

detector, are also discussed there. In Section V, we consider the adaptive case and present a new

model order-selection CG-PAMF (OSCG-PAMF) detector, when both the AR model order and

coef cients are unknown. The performance of the proposed class of CG-PMF and CG-PAMF

detectors is illustrated by numerical results in Section VI. Finally conclusions are summarized

in Section VII.

Vectors and matrices are denoted by boldface lower-case and upper-case letters, respectively.

Transpose, complex conjugate and complex conjugate transpose are respectively represented by

(·)T , (·)∗ and (·)H . C and R denote the complex and real number elds. CN (μ,R) denotes an

additive multivariate Gaussian random variable with mean vector μ and covariance matrix R.

II. DATA MODEL

Consider a received J-channel sequence {x(n)|n = 1, 2, · · · , N} corrupted by a space-time

correlated disturbance random process c(n). The detection problem involves the following binary

hypotheses:

H0 : x(n) = c(n)

H1 : x(n) = as(n) + c(n) (1)

May 9, 2011 DRAFT3
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where s(n) is a known J-channel signal and a is its deterministic but unknown complex

amplitude. All vectors in (1) are J × 1 vectors. For convenience of later discussions, de-

ne the following vectors in descending order: s = [sT (N), sT (N − 1), · · · , sT (1)]T , c =

[cT (N), cT (N −1), · · · , cT (1)]T , x = [xT (N),xT (N −1), · · · ,xT (1)]T . It is standard to assume

that the disturbance c is a Gaussian random vector with zero-mean and space-time covariance

matrix Rc ∈ C
JN×JN , while the signal vector s(n) is deterministic (Swerling 0 target). Based

on these assumptions, x ∼ CN (as,Rc), where a = 0 under H0 and a �= 0 under H1.

In STAP, the signal s is known as the space-time steering vector:

s = st ⊗ ss (2)

where st and ss denote the temporal steering vector and spatial steering vector, respectively,

and ⊗ denotes the Kronecker product. For a side-looking uniform linear array (ULA), we have

st = (1/
√

N)[ei2π(N−1)fd , · · · , ei2πfd , 1]T with a normalized Doppler frequency fd and ss =

(1/
√

J)[ei2π(J−1)fs , · · · , ei2πfs , 1]T with a normalized spatial frequency fs. Practically, the true

disturbance covariance matrix Rc is unknown, and often an estimate can be obtained from the

secondary data:

R̂c =
1

K

K∑
k=1

ckc
H
k (3)

where ck, k = 1, 2 · · · , K, denote the secondary data vectors assumed to be signal-free. Accord-

ing to the well-known “RMB” rule [10], we need K ≥ 2JN − 3 so that the average output

signal-to-interference-plus-noise ratio (SINR) loss caused by covariance estimation error is less

than 3 dB. Detectors with an estimated covariance matrix are often called adaptive methods.

III. MF AND PMF

Assuming a known Rc, the matched lter (MF) is obtained by maximizing the output SINR

of a linear receiver or the generalized likelihood ratio (GLR). The test is given by (e.g., [3]):

|sHR−1
c x|2

sHR−1
c s

H1
≷
H0

ηMF (4)

where ηMF is the threshold of the MF. Equation (4) is the well known matched subspace detector

for a rank-1 signal in colored noise. Consequently, it offers unbeatable performance for the

detection problem considered in equation (1).

May 9, 2011 DRAFT4
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For ease of exposition, the MF can also be represented by using a structure of temporal

whitening cascaded with spatial whitening arising from a block LDU decomposition of the

disturbance covariance matrix [6]. This form of MF is given by

|(Q−1/2L−1s)H(Q−1/2ε)|2
(Q−1/2L−1s)H(Q−1/2L−1s)

=
|s̃Hν|2
s̃H s̃

H1
≷
H0

ηMF (5)

where Q ∈ C
JN×JN is a block-diagonal matrix with Hermitian matrices Q(n), n = 1, 2, · · · , N ,

along the main block diagonal, and L ∈ C
JN×JN is a lower block-triangular matrix with J ×

J identity matrices along the main block diagonal. Both L and Q come from a block LDU

decomposition of the disturbance covariance matrix Rc = LQLH . Finally,

ε(n) = x(n) −
(n−1)∑
p=1

AH
n (p)x(n − p) (6)

ν(n) = Q−1/2(n)ε(n) (7)

s̃(n) = Q−1/2(n)

⎡
⎣s(n) −

(n−1)∑
p=1

AH
n (p)s(n − p)

⎤
⎦ (8)

where AH
n (p) ∈ C

J×J is a block element of L−1 located at the (n− p)-th block column and the

n-th block row. Due to the fact that there is no performance penalty for the prewhitening of the

interference [11, Ch.6], (5) is equivalent to (4).

If the disturbance c(n) is stationary in time, the MF can be simpli ed. A parametric matched

lter (PMF) was introduced in [6] by modeling the disturbance as a stationary P -th-order

multichannel autoregressive (AR) process. Speci cally,

c(n) =
P∑

p=1

AH(p)c(n − p) + εP (n) (9)

where AH(p), p = 1, 2, · · · , P , is the p-th AR matrix coef cient of linear prediction, and εP (n)

is the temporally white noise with a spatial covariance matrix QP . The PMF test is given by [6]

|∑N
n=P+1 s̃H

P (n)νP (n)|2∑N
n=P+1 s̃H

P (n)s̃P (n)

H1
≷
H0

ηPMF (10)

where νP (n) = Q
−1/2
P εP (n) and

s̃P (n) = Q
−1/2
P

[
s(n) −

P∑
p=1

AH(p)s(n − p)

]
(11)

for n = P + 1, · · · , N . In practice, the model order P and the AR coef cients {A(p)} are

unknown and hence estimated from the secondary data and/or primary data. Different estimators

lead to different versions and implementations of the PAMF detector [6], [12].

May 9, 2011 DRAFT5
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IV. CG-MF AND CG-PMF

In this section, we discuss alternative implementations of the MF and PMF via the CG algo-

rithm. The resulting detectors are referred to as the CG-MF and CG-PMF detectors, respectively,

for brevity. We start from the CG-MF, which also sets the basis for the CG-PMF. The latter,

by assuming that the disturbance c(n) is temporally stationary, is a computationally simpli ed

version of the CG-MF. The link between the PMF and CG as developed in the sequel reveals

the PMF as a reduced-dimensional subspace detector. In this section, we assume knowledge

of the covariance matrix of the disturbance signal. An adaptive versions of the CG-PMF (i.e.,

CG-PAMF) is discussed in Section V.

A. Conjugate-Gradient MF

The MF detector, as shown in Section III, can be derived from a time-varying linear prediction

process. Speci cally, consider the problem of linearly predicting the n-th sample x(n) under H0

from all prior received samples x(n − 1),x(n − 2), . . . ,x(1) (cf. (9))

x(n) = BH(n)y(n) + ε(n) (12)

where B(n) = [AH
n (1),AH

n (2), · · · ,AH
n (n − 1)]H = [B1(n),B2(n), · · · ,BJ(n)] ∈ C

J(n−1)×J

denotes the (n − 1)-st order time-varying multichannel linear prediction lter, and y(n) =

[yn(1), yn(2), · · · , yn(J(n − 1)]T = [xT (n − 1),xT (n − 2), · · · ,xT (1)]T contains all n − 1

previously received data vectors. It is noted that the above time-varying linear predictor grows

in its lter order or size with n. The multichannel linear predictor is equivalent to J linear

predictors:

xj(n) = BH
j (n)y(n) + εj(n), j = 1, 2, · · · , J (13)

where Bj(n) is a J(n − 1)-dimensional vector which contains the cross-channel correlation

information associated with the j-th channel. The optimum linear predictor can be obtained by

solving the Wiener-Hopf equations:

Ry(n)Bj(n) = Rj(n), j = 1, 2, · · · , J (14)

where Ry(n) = E[y(n)yH(n)] ∈ C
J(n−1)×J(n−1) and Rj(n) = E[y(n)x∗

j(n)] ∈ C
J(n−1)×1.

Again, note that the size of the Wiener-Hopf equation grows with n.

May 9, 2011 DRAFT6
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To obtain a temporally whitened sequence ε(n) for MF detection (cf. (6)), the above linear

prediction process has to be performed multiple times, starting from n = 2 to n = N . For each

n, we need to solve a Wiener-Hopf equation of the form (14). While there are various solvers to

the linear Wiener-Hopf equation, we consider using the conjugate gradient (CG) method, which

has several properties such as fast convergence, a direct link to the Krylov subspace [7], and

a built in model order selection capability. Additional remarks on such aspects are provided

shortly.

The recursive procedure involved for the determination of the linear predictors is described

as follows (also see (9)).

for n = 2 to N do

for j = 1 to J do

Initialization. Initialize the conjugate-direction vector D0,j(n), gradient vector γ1,j(n)

and initial solution B0,j(n):

D1,j(n) = −γ1,j(n) = Rj(n) (15)

B0,j(n) = 0. (16)

for k = 1, 2, · · · , till convergence (k ≤ J(n − 1)) do

Update the step size αk,j:

αk,j(n) =
‖γk,j(n)‖2

DH
k,j(n)Ry(n)Dk,j(n)

. (17)

Update the solution Bk,j:

Bk,j(n) = Bk−1,j(n) + αk,j(n)Dk,j(n). (18)

Update the gradient vector γk+1,j:

γk+1,j(n) = γk,j(n) + αk,j(n)Ry(n)Dk,j(n). (19)

Update the conjugate-direction vector Dk+1,j:

Dk+1,j(n) = Dk,j(n)
‖γk+1,j(n)‖2

‖γk,j(n)‖2
− γk+1,j(n). (20)

end for

end for

end for
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Fig. 1. Time-varying linear prediction in the conjugate-gradient MF detector.

Let B(n) be the multichannel linear predictor formed from Bk,j after convergence. Then,

B(n) can be used to whiten x(n) to produce a temporally whitened sequence ε(n). The spatial

covariance matrix Q(n) of ε(n) is given by (cf. (15))

Q(n) = E[ε(n)εH(n)]

= Rx(n) − BH(n)Ryx(n) (21)

where Rx(n) = E[x(n)xH(n)] ∈ C
J×J , and Ryx(n) = E[y(n)xH(n)] ∈ C

J(n−1)×J , which is

used for further spatial whitening [6].

Fig. 1 depicts the CG-MF detector that produces the n-th sample of the temporally whitened

sequence εj(n) for the j-th channel, where Dk,j(n) = [D1,j(n),D2,j(n), · · · ,Dk,j(n)] is the

conjugate-direction matrix. CG iterations lead to a set of linearly independent vectors D1,j(n), . . . ,Dk,j(n)

that are conjugate orthogonal, i.e.

DH
k,j(n)Ry(n)Dl,j(n) = 0, k �= l. (22)

The output of the k-th iteration is given by

Bk,j(n) =
k∑

m=1

αm,j(n)Dm,j(n) (23)

which is a vector in the k-dimensional vector space spanned by the conjugate-direction vectors

{Dm,j(n), m = 1, 2, · · · , k}. The iterative procedure for the prediction of the n-th sample xj(n),

which involves a J(n− 1)-st order linear predictor, converges after at most J(n− 1) iterations.

The nal solution Bj(n) lies in a J(n − 1)-dimensional vector space.

B. Conjugate-Gradient PMF with Known AR Model Order

If the disturbance signal can be approximated as a temporally wide-sense stationary (WSS)

multichannel AR process, the linear prediction problem of the previous subsection can be

May 9, 2011 DRAFT8
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xj(n)

yn(1)

+
-

P,j(n)

yn(2)

yn(JP)

Fig. 2. Time-invariant linear prediction in the conjugate-gradient PMF detector.

signi cantly simpli ed. Speci cally, suppose the disturbance is an AR(P ) process with model

order P . In this case, the optimum linear predictor for the n-th sample x(n) requires only P

most recently received samples (as opposed to all past samples) and the prediction lter is

time-invariant with a xed size (as opposed to time-varying with a growing size) [13]:

x(n) = BHyP (n) + εP (n) (24)

where the xed P -th order linear predictor B = [AH(1),AH(2), · · · ,AH(P )]H = [B1,B2, · · · ,BJ ]

∈ C
JP×J is composed of the AR coef cient matrices {AH(p)} (cf. (9)), yP (n) = [yn(1), yn(2),

· · · , yn(JP )]T = [xT (n − 1),xT (n − 2), · · · ,xT (n − P )]T denotes the regression data vector,

and n > P . Again, it is convenient to express the above multichannel linear predictor as J scalar

linear predictors:

xj(n) = BH
j yP (n) + εP,j(n), j = 1, 2, · · · , J. (25)

The structure of temporal whitening via linear prediction for the PMF detector is shown in Fig. 2.

The solution to the scalar linear prediction problem can be obtained by solving the following

Wiener-Hopf equation

RyBj = Rj, j = 1, 2, · · · , J (26)

where Ry = E[yP (n)yH
P (n)] ∈ C

JP×JP and Rj = E[yP (n)x∗
j(n)] ∈ C

JP×1. It should be noted

that unlike the MF detector, the above Wiener-Hopf is time-invariant, has a xed size, and needs

to be solved only once. The resulting solution Bj can be used to whiten the entire received signal

x(n) for n > P . The CG algorithm can also be applied to solve (26), and the resulting detector

is referred to as the CG-PMF detector. Since only one xed-sized Wiener-Hopf equation needs

to be solved, the CG-PMF detector is computationally much simpler. Speci cally, the outer loop
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for varying n as discussed in Section IV-A vanishes, and only the conjugate-gradient processing

with n = P + 1 is needed.

Remark: The iterative procedure of CG converges after at most JP iterations for the CG-PMF.

As a result, the nal solution Bj lies in a JP -dimensional vector space spanned by the conjugate

direction vectors Dk,j, k = 1, 2, . . . , JP , or equivalently, the JP -dimensional Krylov subspace

[7]:

K(Rj,Ry, JP ) = span
{
Rj,RyRj, · · · ,RJP−1

y Rj

}
. (27)

This shows that the PMF is a reduced JP -dimensional solution, as opposed to the full JN -

dimensional MF detector. The same conclusion applies to the adaptive version CG-PAMF detector

discussed in Section V.

C. Model Order Selection by CG

In practice, the AR model order P of the disturbance is often unknown and has to be estimated.

A practical approach is to choose an upper bound P̄ for P , and use the CG algorithm to solve

the following Wiener-Hopf equation

R(P̄ )
y B

(P̄ )
j = R

(P̄ )
j , j = 1, 2, · · · , J (28)

where R
(P̄ )
y = E[yP̄ (n)yH

P̄
(n)] ∈ C

JP̄×JP̄ and R
(P̄ )
j = E[yP̄ (n)x∗

j(n)] ∈ C
JP̄×1. The CG

iterative procedure will converge after at most JP̄ iterations with B
(P̄ )
j = [BT

j , 0T
J(P̄−P )×1]

T .

However, with a loosely determined upper bound P̄ , it is often necessary for the sake of reducing

computational complexity to stop the CG iterations before it reaches the maximum number of

iterations. In this section, we propose a model order selection method for use with the CG

algorithm, which is based on the following result.

Lemma 1: Suppose the disturbance in (1) is a J-channel AR(P ) process. Let B
(P̄ )
k,j ∈ C

JP̄×1

be the solution to (28) obtained by CG at the k-th iteration, where k = Jp and p ≤ P̄ . Let

B
(p)
j ∈ C

Jp×1 be the solution to R
(p)
y B

(p)
j = R

(p)
j . Then we have

B
(P̄ )
k,j = Wk,jB

(p)
j , when p = P (29)

where Wk,j = D
(P̄ )
k,j D̄H

k,j , D
(P̄ )
k,j = [D

(P̄ )
1,j ,D

(P̄ )
2,j , · · · ,D

(P̄ )
k,j ] is the conjugate-direction matrix, and

D̄k,j is a k × k matrix composed of the rst k rows of D̃k,j = [D̃1,j, D̃2,j, · · · , D̃k,j] with

D̃k,j =
R

(P̄ )
y D

(P̄ )
k,j

D
(P̄ ) H
k,j R

(P̄ )
y D

(P̄ )
k,j

(30)
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Proof: See Appendix I.

From (29), when p = P , the JP̄ ×JP matrix WJP,j transforms Bj in K(Rj,Ry, JP ), which

is generated by CG-PMF with a known P , to B
(P̄ )
JP,j in K(Rj,R

(P̄ )
y , JP ), which is generated by

CG-PMF with an unknown P . So the PMF AR coef cient vector Bj is completely determined

by the truncated solution B
(P̄ )
JP,j of CG with an unknown P after JP iterations.

We now explain how to use Lemma 1 for AR model order selection in CG-PMF. De ne the

residue vector

εk,j = B
(P̄ )
k,j − D

(P̄ )
k,j D̄H

k,jB
(p)
j , for k = Jp. (31)

According to (29), εk,j = 0 when k = JP , so the norm of εk,j can be used for model order

selection. However, since the Wiener solution B
(p)
j is practically unknown, εk,j cannot be directly

computed from (31). We propose an approach to replace B
(p)
j in (31) by the truncated solution

composed of the rst k elements of B
(P̄ )
k,j , which can be considered as an approximation of

[BT
j , 0T

J(P̄−P )×1]
T

ε̂k,j = B
(P̄ )
k,j − D

(P̄ )
k,j D̄H

k,jB̄
(P̄ )
k,j (32)

where B̄
(P̄ )
k,j contains the rst k = Jp elements of B

(P̄ )
k,j . Our CG-based model order selection

procedure is summarized as follows.

• Step 1: Select an upper bound P̄ for the model order. One such an upper bound suggested

in [6] for STAP detection is

P̄ = max

{⌊
3
√

N

J

⌋}
(33)

where 
·� rounds a real-valued number towards zero.

• Step 2: Use the CG algorithm to solve the Wiener-Hopf equation (28).

– Step 2.1: Following every J iterations of the CG algorithm, compute the average residue

over J channels:

¯̂ε2
k =

1

J

J∑
j=1

‖ε̂k,j‖2 , k = J, 2J, . . . (34)

– Step 2.2: If ¯̂ε2
Jp is smaller than a speci ed tolerance level, then stop the CG iteration,

and the estimated AR model order is P̂ = p.

The advantage of the above CG-based model order selection method is that it does not require

full iterations of the CG algorithm and is ef cient. The complexity of the CG algorithm with full
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iterations is in the same order as that of computing the inverse of R
(P̄ )
y , which is O(J3P̄ 3), while

the complexity of using the CG-based order selection method, is O(J3PP̄ 2). This is because the

latter only requires JP iterations to determine the model order, and the additional complexity

in each J iterations for (32) is the complexity of two matrix-vector multiplications, which is

2(JP̄ )2. So the total complexity is O(JP (JP̄ )2 + 2P (JP̄ )2) ≈ O(J3PP̄ 2). Next, we compare

the computational complexity of the CG-PMF with an unknown P with the complexity of the

eigencanceler [14], which is a standard eigen-subspace detector. The eigencanceler method, has

a complexity of 9J3N3 by using the symmetric QR algorithm to obtain the eigen-subspace and

its corresponding eigen-values [7]. Since P̄ ≤ N , and generally P 
 N , the complexity of

CG-PMF is much lower than eigencanceler.

D. Convergence in Airborne Radar Applications

One important property of the CG algorithm is its fast convergence. In general, it takes no more

than JP iterations to solve the linear equation (26) [7]. Even faster convergence is possible if the

covariance matrix of the disturbance has some speci c structure. In particular, if the covariance

matrix is a rank-rc correction of an identity matrix:

Ry = Ri + σ2
nI (35)

where Ri is a rank-rc positive semi-de nite matrix, then the CG algorithm converges in at most

rc + 1 iterations [7].

In airborne radar applications, the disturbance covariance matrix often consists of two com-

ponents, namely a low-rank Ri due to the clutter and jamming and a scaled identity σ2
nI due

to the white noise, where σ2
n denotes the noise variance. The rank rc is typically much smaller

than the joint spatio-temporal dimension JN . Speci cally, if the disturbance is primarily due to

ground clutter and thermal noise, then according to Brennan’s rule [2], the rank of the clutter

covariance matrix for the full-dimensional MF is approximately

rc,full ≈ �J + (N − 1)β� (36)

where β = 2vgTr/d, vg is the platform velocity, Tr is the pulse repetition period, d is the antenna

element spacing, and �·� rounds a real-valued number towards in nity.
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Likewise, we can approximate the rank of the disturbance covariance matrix for the PMF

detector as

rc ≈ �J + (P − 1)β�. (37)

The smaller rank rc over (36) is due to the fact that the disturbance covariance matrix is formed

over P pulses, which is suf cient for the reduced-dimensional PMF detector due to the underlying

AR(P ) model. Meanwhile, the space-time disturbance covariance matrix for the full-dimensional

MF detector is formed over N (the entire number of) pulses. As such, the PMF can bene t more

from the fast convergence property of the CG algorithm.

E. Preconditioned Conjugate-Gradient PMF

In cases where the disturbance covariance does not have a low-rank structure as in (35),

preconditioning is usually helpful in improving the convergence rate. The idea is based on the

fact that the convergence rate of CG is determined mainly by the eigenvalue structure of Ry.

In particular, the residue between the Wiener solution and kth-step conjugate gradient result is

bounded by [7]

‖Bk,j − Bj‖Ry ≤ 2‖B0,j − Bj‖Ry

(√
κ − 1√
κ + 1

)k

(38)

where ‖ω‖Ry =
√

ωHRyω denotes the Ry norm and κ is the condition number of Ry. It is

clear that rapid convergence can be achieved if κ is near 1. In the following, we discuss the use

of preconditioning with the CG-PMF. For simplicity, the resulting detector is referred to as the

PCG-PMF detector.

Speci cally, consider the modi ed Wiener-Hopf equation (cf. (26))

R̃yB̃j = R̃j (39)

where R̃y = M− 1
2RyM

− 1
2 , B̃j = M

1
2Bj , R̃j = M− 1

2Bj , and M is a Hermitian positive-de nite

matrix that is called preconditioner [7]. The preconditioner is used to yield a better conditioned

R̃y, which has a smaller condition number than Ry, and thus a faster convergence rate. For

PMF, the disturbance covariance matrix is a block-Toeplitz (BT) matrix. For such matrices,

block-circulant (BC) preconditioners are often recommended [8], [9]. Our BC preconditioner

can be directly computed from the disturbance covariance matrix Ry which has the following
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block Toeplitz matrix structure:

Ry =

⎡
⎢⎢⎢⎣

Rx(0) · · · Rx(P − 1)
...

. . .
...

Rx(1 − P ) · · · Rx(0)

⎤
⎥⎥⎥⎦ (40)

where Rx(m) = E[x(n)xH(n − m)] ∈ C
J×J . In particular, the BC preconditioner is given by

[15]

M =

⎡
⎢⎢⎢⎢⎢⎣

M0 MP−1 · · · M1

M1 M0 · · · M2

...
...

. . .
...

MP−1 MP−2 · · · M0

⎤
⎥⎥⎥⎥⎥⎦

where

Mk =
(P − k)Rx(k) + kRx(k − P )

P
,

0 ≤ k < P. (41)

It is noted that, as shown in [7], practically M− 1
2 does not need to be explicitly calculated in

the PCG algorithm. The PCG algorithm is summarized as follows.

Initialization. Initialize the conjugate-direction vector D1,j , gradient vector γ1,j , preconditioned

vector z1,j and initial solution B0,j:

γ1,j = −Rj (42)

D1,j = z1,j = M−1γ1,j (43)

B0,j = 0. (44)

for k = 1, 2, · · · , till convergence (k ≤ J(P − 1)) do

Update the step size αk,j:

αk,j =
γH

k,jzk,j

DH
k,jRyDk,j

. (45)

Update the solution Bk,j:

Bk,j = Bk−1,j + αk,jDk,j. (46)

Update the gradient vector γk+1,j:

γk+1,j = γk,j + αk,jRyDk,j. (47)
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Update the preconditioned vector zk+1,j:

zk+1,j = M−1γk+1,j . (48)

Update the conjugate-direction vector Dk+1,j

Dk+1,j = zk,j +
γH

k+1,jzk+1,j

γH
k,jzk,j

Dk,j. (49)

end for

The complexity associated with the AR parameter estimation in PCG-PMF is summarized

in TABLE I, where r is the number of iterations needed by the PCG algorithm to reach

convergence, and the op counts are for all J channels. It is interesting to note that the PCG-PMF

is computationally very ef cient, involving approximately O(rJ3P log2 P ). The computational

ef ciency is primarily due to the fast convergence rate offered by preconditioning and the use

of a BC preconditioner, as explained next. In the following, we discuss the complexity of only

M−1, (45) and (48), since the other calculations are obvious.

First, we consider M−1. Since M is a block-circulant (BC) matrix, the inverse of M can be

computed by using the Fast Fourier transform (FFT) [16]

M−1 =

⎡
⎢⎢⎢⎢⎢⎣

C0 CP−1 · · · C1

C1 C0 · · · C2

...
... · · · ...

CP−1 CP−2 · · · C0

⎤
⎥⎥⎥⎥⎥⎦ (50)

where

Cm =
1

P 2

P−1∑
k=0

W−km
P M−1

k , m = 0, 1, · · · , P − 1 (51)

and W−km
P = exp(j2kmπ/P ). It follows that the computation of M−1 is composed of P matrix

inversions of J × J matrices and J2 FFTs of length P . Therefore, the total complexity is

O(J2P log2 P + J3P ).

Second, we consider (45). The main complexity of (45) is matrix-vector multiplication RyDk,j .

Since Ry is a JP -dimensional BT matrix, the above matrix-vector multiplication consists of J2

Toeplitz matrix-vector multiplications, where each Toeplitz matrix is a P × P matrix. Each

Toeplitz matrix-vector multiplication can be implemented by the FFT using O(P log2 P ) ops
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TABLE I

COMPLEXITY OF PCG-PMF

Equation Flops Remark

(41) O(J2P ) calculated once

M−1 O(J2P log2 P + J3P ) calculated once

(45) O(J3P log2 P ) at k-th iteration

(46) O(J2P ) at k-th iteration

(47) O(J2P ) at k-th iteration

(48) O(J3P log2 P ) at k-th iteration

(49) O(J2P ) at k-th iteration

Total ≈ O(rJ3P log2 P ) for r iterations

[17]. Hence, the complexity of (45) for each channel per iteration is O(J2P log2 P ). With J

channels and r iterations, the total complexity of (45) is O(rJ3P log2 P ).

Finally, we consider (48). Since the preconditioner M is a BC matrix, (48) can again be com-

puted by J2 FFTs of length P . The complexity for each channel per iteration is O(J2P log2 P ),

so the total complexity of (48) for J channels is O(rJ3P log2 P ).

Here, we make a comparison between the PCG-PMF and CG-PMF. Since the condition number

of the preconditioned disturbance covariance matrix R̃y is generally smaller than that of Ry,

PCG-PMF provides a faster convergence than CG-PMF. The latter has a complexity of O(J3P 3).

V. CONJUGATE-GRADIENT PAMF

The CG-PMF algorithm is now extended to the adaptive case when both the covariance matrix

and the AR model order P are unknown. The resulting detector is referred to as the CG-PAMF

detector. The extension of CG-PMF involves i) replacing the true covariance matrices with

estimates obtained from the target-free training data; and ii) integrating the CG-based model

order selection proposed in Section IV-C with conjugate-gradient iterations. The CG-PAMF

detector with order selection (OSCG-PAMF) is summarized next.

• Step 1: Estimate the disturbance covariance matrices from the training data via temporal
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and range averaging:

R̂(P̄ )
y =

⎡
⎢⎢⎢⎣

R̂x(0) · · · R̂x(P̄ − 1)
...

. . .
...

R̂x(1 − P̄ ) · · · R̂x(0)

⎤
⎥⎥⎥⎦ (52)

R̂(P̄ )
yx =

⎡
⎢⎢⎢⎣

R̂x(−1)
...

R̂x(−P̄ )

⎤
⎥⎥⎥⎦ (53)

where the sub-matrices are given by

R̂H
xx(m) =

1

NK

K∑
k=1

N−m∑
l=1

xk(l + m)xH
k (l) (54)

with K denoting the number of training data vectors and P̄ determined by (33).

• Step 2: Use the CG algorithm to solve

R̂(P̄ )
y B̂(P̄ ) = R̂(P̄ )

yx . (55)

– Step 2.1: Examine the residual ¯̂εJp (34) at each Jp-th (p = 1, 2, · · · , P̄ ) iteration of

CG. If ¯̂εJp < α0
¯̂εJ(p−1), where 0 < α0 < 1 is a stopping threshold, then exit the CG

iteration, and set the AR model order as P̂ = p.

Unlike the original PAMF with an unknown AR model order [6], which has to run recursively

from p = 1 to a P̂ (P̂ ≤ P̄ ) to jointly estimate the AR coef cients and model order, OSCG-

PAMF does not contain any recursion. It only has to perform CG with the disturbance covariance

matrix R
(P̄ )
y for JP̂ iterations to obtain a model order estimate.

Remark: Several estimators can be employed to nd the linear prediction lters for the PAMF.

The estimator as represented by (55) along with the covariance matrix estimates (52)-(54) is

often called the multichannel Yule-Walker method. Other estimators, such as the least-squares

estimators [6], solve slightly modi ed versions of the linear equation (55). It is noted that in

most cases, the CG algorithm can be used to ef ciently solve such a modi ed linear equation.

Due to space limit, we will not explore these alternative CG-PAMF detectors.

A similar comparison can be made between the complexity of the OSCG-PAMF detector and

that of the eigencanceler when the covariance matrix is unknown. In addition to the numbers of

ops as summarized in Section IV-C, both have to pay the extra complexity needed to estimate
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the covariance matrix. In this case, the OSCG-PAMF requires an additional complexity of

O(J2P̄NK) as incurred in (52)–(54), whereas the extra complexity for the eigencanceler is

O(J2N2K) that is used to estimate a full (JN × JN ) space-time covariance matrix from K

training signals.

VI. NUMERICAL RESULTS

In this section, simulation results are provided to illustrate the performance of the proposed

techniques. We consider simulated data generated using AR models and the KASSPER data

[18], which were obtained from more realistic clutter models. The simulation results presented

below use 20000 independent Monte Carlo data realizations and a probability of false alarm of

Pfa = 10−2. The chosen Pfa may be considered too high for many practical detection applications.

It is noted that the choice is only to facilitate computer simulation and reduce simulation time.

The main observations from the simulation, including the convergence of the CG algorithm in

PAMF detection and the accuracy of the estimated P provided by the proposed model order

selection method, are independent of the choice of Pfa.

A major issue that we like to illustrate in the following numerical examples is the convergence

of the CG algorithm, with partial or full iterations, when the data covariance matrix is known

or estimated, and/or when the AR model order is known or estimated. To this end, we compare

the various detectors used with the CG algorithm, including the CG-PMF (Section IV-B), CG-

PAMF with a known AR model order (Section V) and OSCG-PAMF with an estimated model

order (Section V), with the same detectors used with direct matrix inverse (DMI). For example,

the DMI-PAMF detector involves a direct inverse of the estimated covariance matrix in (52)

and uses it compute the linear prediction lter (26). This DMI approach turns out to coincide

with the Yule-Walker method [13] for AR spectral estimation. It is noted in [6] that there are

alternative spectral estimation methods which may yield better detection performance in some

scenarios. These alternatives are not considered here since the focus is the convergence of the

CG algorithm in PAMF. In the following, we will primarily use, as a comparison metric, the

probability of detection versus the SINR for a given probability of false alarm. The output SINR

of the PAMF detector was derived and extensively studied in [19].

First, we examine the performance of the two implementations of the PMF detector by using

simulated data with AR disturbances. The disturbance is an AR(2) process with J = 4 elements
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Fig. 3. Probability of detection versus SINR of PMF for simulated data(J = 4; N = 64; P = 2)

and N = 64 pulses. Both PMF detectors have knowledge of the exact disturbance covariance

matrix; however, they use different approaches to compute the linear predictor. Speci cally, we

consider the DMI-PMF, which uses direct matrix inverse to solve the Wiener-Hopf equation,

and the CG-PMF as discussed in Section IV-B with knowledge of the AR model order P . The

numerical results are shown in Fig. 3. It is seen that both implementations yield an identical

detection performance.

We next examine the performance of the CG-based AR model order selection method used in

the CG-PMF and CG-PAMF detectors with an unknown AR model order. Two AR disturbance

signals with J = 4 and N = 64 are considered, and their model orders are P = 1 and 3,

respectively. We choose the same upper bound P̄ = 6 for both cases. The residual ¯̂εk (34) is

computed and used for model order selection; as a benchmark, we also include ε̄k, which is

similarly computed as in (34) but with ε̂k,j replaced by εk,j . Recall that ¯̂εk is an approximation

of ε̄k, which cannot be computed in practice due to the fact that the true Wiener-Hopf solution is

unknown. The numerical results for CG-PMF are shown in Fig. 4 and Fig. 5, which correspond

to P = 1 and P = 3, respectively. It is seen that, ¯̂εk has a sharp decrease at the JP -th (JP = 4

for P = 1 and JP = 12 for P = 3) iteration of CG, which con rms the effectiveness of the

CG-based model order selection method. The counterpart model order selection results for CG-

PAMF are shown in Fig. 6 and Fig. 7, for P = 1 and P = 3, respectively. Unlike the CG-PMF
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Fig. 4. Residuals ε̄Jp and ¯̂εJp for model order selection in CG-PMF (J = 4; N = 64; P = 1; P̄ = 6)
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Fig. 5. Residuals ε̄Jp and ¯̂εJp for model order selection in CG-PMF (J = 4; N = 64; P = 3; P̄ = 6)

which uses the real disturbance covariance matrix, the sample covariance matrix estimated from

the training data (cf. (40)) is employed for model order selection in CG-PAMF. Here the training

data size is set to K = 32. It is also shown that ¯̂εk has a sharp decrease at the JP -th (JP = 4

for P = 1 and JP = 12 for P = 3) iteration of CG, although the decrease in residue is smaller

than that of CG-PMF due to estimation error of the sample covariance matrix.

We now consider the convergence of PCG-PMF. The simulated disturbance is an AR(8)
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Fig. 6. Residuals ε̄Jp and ¯̂εJp for model order selection in CG-PAMF (K = 32; J = 4; N = 64; P = 1; P̄ = 6)
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Fig. 7. Residuals ε̄Jp and ¯̂εJp for model order selection in CG-PAMF (K = 32; J = 4; N = 64; P = 3; P̄ = 6)

multichannel process with J = 4. The convergence of CG-PMF and PCG-PMF is shown in

Fig. 8. The condition number of the preconditioned covariance matrix is 4.2, which is much less

than the condition number of the original covariance matrix 77.1. It is seen from Fig. 8 that only

5 iterations are needed in PCG-PMF to reach a relative approximation error under 1%, while 20

iterations are needed for CG-PMF.

Our next example considers the adaptive PAMF detector, for which the disturbance covariance
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Fig. 8. Convergence of CG-PMF and PCG-PMF (J = 4; P = 8)

matrix is unknown and the sample covariance matrix is estimated by (52). Similar to the PMF

detector, we compare two implementations of the PAMF detector, including the DMI-PAMF

and CG-PAMF, Here the DMI-PAMF directly inverses the sample covariance matrix to get the

maximum-likelihood estimation of AR coef cients [13]. The disturbance is an AR(2) signal,

whose disturbance covariance matrix is estimated from K = 16 target-free training data vectors,

and the AR coef cients are estimated based on the estimated disturbance covariance matrix. The

numerical results are shown in Fig. 9. It is observed that both implementations yield an identical

detection performance.

The performance of the CG-PAMF with an unknown disturbance AR model order and dis-

turbance covariance matrix is considered next. Both AR model based data and KASSPER 2002

data set are employed in this example. The KASSPER data set was generated by considering

practical airborne radar parameters and issues found in a real-world clutter environment [18].

Speci cally, the simulated airborne radar platform travels at a speed of 100 m/s with a 3◦ crab

angle. The radar carrier frequency is 1240 MHz. The horizontal 11 antenna elements form a

ULA with a spacing of 0.1092m between adjacent elements, and the transmit array is uniformly

weighted and phased to steer the main beam to 195◦. The pulse repetition frequency is 1984

Hz and a coherent processing interval contains 32 pulses. Only the rst 8 elements are used in

our simulation. We use the covariance matrix associated with range bin 200 in the KASSPER
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Fig. 9. Probability of detection versus SINR of PAMF for AR data (K = 16; J = 4; N = 64; P = 2)

data set to generate the test data and the covariance matrices from the neighboring ranges bins

to generate the training signals. A target is injected into the test cell with a normalized spatial

frequency 0.1 and a normalized Doppler frequency 0.35.

The numerical results are shown in Fig. 10 for the AR model based data and, respectively,

Fig. 11 for the KASSPER 2000 data, where OSCG-PAMF (unknown P ) represents the CG-

PAMF detector with the CG-based model order selection method which employs a model order

upper bound P̄ calculated by (33). In Fig. 11, we also include for comparison the joint domain

localized (JDL) detector [20], a popular reduced-dimensional STAP solution in scenarios of

limited training. The JDL is implemented by using 3 beams and 3 Doppler bins for adaptivity.

It is seen that the performance of the OSCG-PAMF is nearly identical to that of CG-PAMF with

known P (AR data) or a pre-selected P = 2 (KASSPER data). For the case of AR data, we

noticed that only one model order selection error (P̂ �= P ) occurred out of 20000 simulations.

Moreover, using the relevant parameters of the KASSPER data, we have β = 2vgTr/d = 0.923.

It follows that for J = 8 elements, the maximum number of conjugate-gradient iterations needed

by the CG-PAMF for a given model order p is estimated to be rcp + 1 = �8.077 + 0.923p�. For

example, the maximum numbers of CG iterations for p = 2 is about 10 due to the low-rank

structure of the clutter, whereas without such a structure, it would require pJ = 16 iterations for

the CG to converge. It is also seen in Fig. 11 that the PAMF detectors outperform the JDL-AMF
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Fig. 10. Probability of detection versus SINR for AR data (K = 32; J = 4; N = 64; P = 2; P̄ = 6)
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Fig. 11. Probability of detection versus SINR for KASSPER 2002 data (K = 32; J = 8; N = 32; P = 2; P̄ = 2)

detector. The JDL-AML experiences a loss of about 4 dB compared with the MF.

Finally, we compare the complexity in terms of the number of ops required by the CG and

DMI implementations. The ops required by the CG-PAMF and DMI-PAMF versus the AR

model order p are shown in Fig. 12. For the DMI-PAMF, the QR decomposition is adopted to

get the J-channel AR coef cients. It is seen that the complexity of the CG-PAMF is lower than

that of the DMI-PAMF.
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Fig. 12. Computational complexity of CG-PAMF and DMI-PAMF versus AR model order p (K = 32; J = 8; N = 32).

VII. CONCLUSIONS

The conjugate-gradient (CG) algorithm was employed to solve the linear prediction problem

underlying the parametric matched lter (PMF) and parametric adaptive matched lter (PAMF)

detectors. It is shown that the CG algorithm leads to not only new ef cient implementations,

but also new insights of these parametric detectors as reduced-dimensional subspace detectors.

In particular, the linear prediction lter and whitening lter of the PMF and PAMF detectors are

within the Krylov subspace of dimension JP , and these detectors are reduced JP -dimensional

subspace detectors, where J and P are the number of channels and AR model order, respec-

tively. We examined the convergence rate of the CG parametric detectors. In airborne radar

applications, the special low-rank structure of the disturbance covariance matrix implies that a

rapid convergence is possible, whereby convergence can be achieved without completing a full

round of CG iterations. Even for disturbance covariance matrices that do not have the low-rank

structure, preconditioning methods can be used to speed up the convergence rate. In general, the

CG parametric detectors are more ef cient than their counterparts implemented in conventional

approaches. We also presented a new CG-based AR model order selection method, which is

naturally integrated with the CG iterations. The proposed techniques are illustrated by using

both KASSPER and other simulated data.

Finally, we note that the CG algorithm bears some similarity to a vector space approach [21]
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to solving the multi-dimensional Yule-Walker equation for an arbitrary region of support. Both

involve the use of conjugate orthogonal basis vectors. A future subject would be to investigate

the relation of the two approaches and explore the application of the CG algorithm for multi-

dimensional and multichannel applications.

APPENDIX I

PROOF OF LEMMA 1

It is well known that the conjugate direction vectors obtained by the CG algorithm solving

the Wiener-Hopf equation (28) span the Krylov subspace [7]:

K(R
(P̄ )
j ,R(P̄ )

y , k) = span
{
D

(P̄ )
1,j ,D

(P̄ )
2,j , · · · ,D

(P̄ )
k,j

}
(56)

Furthermore, the truncated solution obtained at the k-th iteration B
(P̄ )
k,j minimizes the R

(P̄ )
y -norm

of the approximation error over all vectors on K(Rj,R
(P̄ )
y , k) [22], i.e.

∥∥∥B
(P̄ )
j − B

(P̄ )
k,j

∥∥∥
R

(P̄ )
y

= min
ak

∥∥∥∥∥x −
r∑

k=0

akR
(P̄ ) k
y B

(P̄ )
j

∥∥∥∥∥
R

(P̄ )
y

. (57)

Therefore, the truncated solution obtained at the k-th iteration B
(P̄ )
k,j is the R

(P̄ )
y -orthogonal projec-

tion of the Wiener solution B
(P̄ )
j to the subspace K(Rj,R

(P̄ )
y , k), and αk,j =

[
α

(P̄ )
1,j , α

(P̄ )
2,j , · · · , α

(P̄ )
k,j

]T

contains the coordinate values of conjugate-direction vectors
{
D

(P̄ )
1,j ,D

(P̄ )
2,j , · · · ,D

(P̄ )
k,j

}
, which are

given by

α
(P̄ )
k,j =

D
(P̄ ) H
k,j R

(P̄ )
y B

(P̄ )
j

D
(P̄ ) H
k,j R

(P̄ )
y D

(P̄ )
k,j

. (58)

With the de nition of D̃k,j by (30), we can write after JP iterations

αJP,j = D̃H
JP,jB

(P̄ )
j (59)

where D̃JP,j = [D̃1,j, D̃2,j, · · · , D̃JP,j]. Recalling B
(P̄ )
j = [BT

j , 0T
J(P̄−P )×1]

T , we have

αJP,j =
[
D̄H

JP,j D̃H
JP,d

]⎡
⎣Bj

0

⎤
⎦ (60)

where D̄JP,j ∈ C
JP×JP is the upper JP × JP block matrix of D̃JP,j , and D̃JP,d contains the

lower block of D̃JP,j . Then Bj is given by

Bj = D̄−H
JP,jαJP,j. (61)
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The intermediate solution obtained at the JP -th CG iteration is

B
(P̄ )
JP,j =

JP∑
m=1

αm,jD
(P̄ )
m,j = D

(P̄ )
JP,jαJP,j. (62)

It follows from (61) and (62) that B
(P̄ )
JP,j and Bj are related by

B
(P̄ )
JP,j = D

(P̄ )
JP,jD̄

H
JP,jBj = WJP,jBj (63)

where WJP,j = D
(P̄ )
JP,jD̄

H
JP,j ∈ C

JP̄×JP , which completes the proof.
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